
Multimodal Continual Graph Learning with
Neural Architecture Search

Jie Cai
1
, Xin Wang

1*
, Chaoyu Guan

1
, Yateng Tang

2
, Jin Xu

2*
, Bin Zhong

2
, Wenwu Zhu

1*

1. Tsinghua University, China

2. Data Quality Team, Wechat, Tencent Inc., China

{caij20,guancy19}@mails.tsinghua.edu.cn,{xin_wang,wwzhu}@tsinghua.edu.cn

{fredyttang,harryzhong}@tencent.com,cnjinxu@gmail.com

ABSTRACT
Continual graph learning is rapidly emerging as an important role

in a variety of real-world applications such as online product recom-

mendation systems and social media. While achieving great success,

existing works on continual graph learning ignore the information

from multiple modalities (e.g., visual and textual features) as well

as the rich dynamic structural information hidden in the ever-

changing graph data and evolving tasks. However, considering mul-

timodal continual graph learning with evolving topological struc-

tures poses great challenges: i) it is unclear how to incorporate the

multimodal information into continual graph learning and ii) it is

nontrivial to design models that can capture the structure-evolving

dynamics in continual graph learning. To tackle these challenges, in

this paper we propose a novel Multimodal Structure-evolving Con-

tinual Graph Learning (MSCGL) model, which continually learns

both the model architecture and the corresponding parameters for

Adaptive Multimodal Graph Neural Network (AdaMGNN). To be

concrete, our proposed MSCGL model simultaneously takes so-

cial information and multimodal information into account to build

the multimodal graphs. In order for continually adapting to new

tasks without forgetting the old ones, our MSCGL model explores a

new strategy with joint optimization of Neural Architecture Search

(NAS) and Group Sparse Regularization (GSR) across different tasks.

These two parts interact with each other reciprocally, where NAS

is expected to explore more promising architectures and GSR is

in charge of preserving important information from the previous

tasks. We conduct extensive experiments over two real-world mul-

timodal continual graph scenarios to demonstrate the superiority

of the proposed MSCGL model. Empirical experiments indicate that

both the architectures and weight sharing across different tasks

play important roles in affecting the model performances.

CCS CONCEPTS
•Computingmethodologies→Machine learning;Online learn-
ing settings.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00

https://doi.org/10.1145/3485447.3512176

KEYWORDS
continual learning, multimodal graph, neural architecture search

ACM Reference Format:
Jie Cai

1
, Xin Wang

1*
, Chaoyu Guan

1
, Yateng Tang

2
, Jin Xu

2*
, Bin Zhong

2
,

Wenwu Zhu
1*
. 2022. Multimodal Continual Graph Learning with Neural

Architecture Search. In Proceedings of the ACMWeb Conference 2022 (WWW
’22), April 25–29, 2022, Virtual Event, Lyon, France. ACM, New York, NY, USA,

9 pages. https://doi.org/10.1145/3485447.3512176

1 INTRODUCTION
Continual graph learning has been an emerging research topic

which learns from graph data with different tasks coming sequen-

tially, aiming to gradually learn new knowledge without forgetting

the old ones across sequentially coming tasks [17, 34, 38]. Nev-

ertheless, existing continual graph learning methods ignore the

information hidden in various modalities (e.g., visual and text etc.)

as well as the rich dynamic structural information lying in the

ever-changing graph data of sequentially coming tasks. On the one

hand, many real-world applications such as chemical molecule dis-

covery [13], social media [24, 26] and sentiment analysis [35] show

increasing attentions to multimodal information in graphs [40].

On the other hand, we can always construct multimodal graphs

with dynamic structural information (e.g., sequences of social me-

dia articles with users sharing, commenting, clicking and favoring

behaviors) through extracting different modalities as well as social

connections across items and users by tracking people who read

the same article and people who buy the same product.

Specifically, the multimodal graphs with dynamic structural in-

formation and modality information in real-world have the follow-

ing properties:

• Tasks come in a sequential order with data distribution dy-

namically changing due to some reasons (e.g., seasonal trends

or emergencies);

• Contents contain elements of various modalities including

texts, pictures and timestamps, etc.;

• The connections between different contents reflect the dis-

semination of information or the similarities between dif-

ferent contents, which is also dynamically changing in the

course of time.

Given that the optimal model architecture may vary under dif-

ferent tasks with different data distributions [8, 41], when applying

graph deep learning models such as graph neural networks (GNNs)

to tasks coming sequentially, it is necessary to dynamically learn the

*Corresponding Authors

1292

https://doi.org/10.1145/3485447.3512176
https://doi.org/10.1145/3485447.3512176

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Cai, et al.

best architectures for different tasks in order to obtain satisfactory

performances.

However, considering multimodal continual graph learning with

evolving topological structures and modality information poses

great challenges:

(1) It is unclear how to incorporate the multimodal informa-

tion [39] into continual graph learning. Multimodal contin-

ual graphs result in more complex models to consider than

single-modal graphs and defining the shared mutlimodal

graph neural networks (MGNN) model in the process of

continual learning is also not straightforward.

(2) It is nontrivial to designmodels that can capture the structure-

evolving dynamics in continual graph learning. Existing con-

tinual graph learning methods can only be applied on the

fixed GNN structures. How to share parameters and struc-

tures between different tasks while maintaining continual

learning ability is important.

Existing continual graph methods [17, 27] do not take any mul-

timodal information into consideration. They design a fixed ar-

chitecture for every task and ignore the necessity of architecture

adjustment to further improve the memory and expansion effi-

ciency, causing the catastrophic forgetting problem of multimodal

continual learning with structure-evolving dynamics.

To tackle these challenges, we propose a novel Multimodal

Structure-evolving Continual Graph Learning (MSCGL) model,

which continually learns both the model architectures and the

corresponding parameters for Adaptive MGNN (AdaMGNN). Our

MSCGL model is able to augment topology information, feature

information and modality information over time without forgetting

the information learned in the past.

To solve challenge (1), we design and maintain an expanding net-

work called AdaMGNN to adaptively learn from streaming tasks.

For each task, we allow the AdaMGNN to grow in complexity,

change in architecture during training and warm-start from exist-

ing architectures and weights based on the idea of automated graph

machine learning[30]. To handle challenge (2), we add constraints

when searching for network architectures, so that the learned archi-

tectures have a better ability to learn new tasks without forgetting

previous knowledge. We also use parameter sharing to avoid un-

necessary parameter storage.

This paper is based on the motivation to use the historical infor-

mation of multimodal graphs to solve graph learning problems of

the new graph, without forgetting the knowledge learned in the

past, so as to achieve continual learning of multimodal graph data.

Our work is innovative from previous continual graph learning

works because these methods ignore multimodal information from

graph data and fix the network structure of GNNs, without adaptive

changes to the network structure according to different tasks. To

summarize, we make the following contributions:

• Wepresent aMultimodal Structure-evolving Continual Graph

Learning (MSCGL) model that adaptively explores model ar-

chitectures without forgetting history information.

• We propose a adaptive MGNN (AdaMGNN) model cooper-

ated with a sharing strategy. The sharing strategy avoids

unnecessary architecture extension for similar tasks.

• We conduct sufficient experiments over two real-world mul-

timodal continual graph scenarios to evaluate the proposed

MSCGL framework. Empirical evidences indicate that both

the evolving architectures and weight sharing across differ-

ent tasks play important roles in affecting the model perfor-

mances.

We discuss related work in Section 2, formulate the problem in

Section 3, present our proposed model in Section 4, describe our

experiments in Section 5 and conclude the paper in Section 6.

2 RELATEDWORK
2.1 Multimodal Graph Neural Networks
Due to the success of graph learning in information aggregation,

transmition and the maturity of multimodal learning, some scholars

focus on multimodal graph learning for effective use of multimodal

dependencies and information dissemination relationships. Mul-

timodal graph neural network is a kind of deep graph learning

model that aims to represent multimodal graph-structured data

in an end-to-end way. [22, 33] We et al. [25] assign a graph con-

volution network for each modal to capture the representation

of each node hidden in modal specific user-item bipartite graph.

Tao et al. [31] not only use neighbor-ware attention to model the

similarity between different users and different items, but also use

gated attention mechanism to identify importance scores of differ-

ent modalities to user preference. Gao et al. [7] dynamically update

the representations of nodes by three attention-based aggregators

which guide the message passing between modalities. Although

these multimodal graph learning methods have made great success,

the existing multimodal graph learning methods are designed for

static graphs. That is, they cannot not be directly used in continual

learning scenarios because of the catastrophic forgetting problem.

2.2 Continual Graph Learning
Continual graph learning aims to gradually extend the acquired

knowledge when graph-structured data come in an infinite stream-

ing way which successfully solve the catastrophic forgetting prob-

lem [2]. Existing continual graph learning methods can be di-

vided into two categories: Replay-based methods that stores rep-

resentative history data or well-designed representation of data;

Regularization-based methods that append regular terms to the loss

function to limit changes of the past knowledge.

GraphSAIL [34] stores the local structure, global structure, and

self-information of each node explicitly using distillation mech-

anism. Liu et al. [17] propose topology-aware weight preserving

(TWP) that explicitly learns the local structure of the input graph

and the topology aggregation mechanism in an attempt to stabilize

the parameters that play a key role in topology aggregation. Wang

et al. [28] combine data replay and model regularization to preserve

for existing patterns. Zhou et al. [38] select some important nodes

in the past graphs as experience nodes and save them for playback

when the new diagrams are trained. Galke et al. [6] systematically

analyze the influence of knowledge stored explicitly as historical

data or implicitly in model parameters. However, this method just

uses warm restart or cold restart for each new task.

These articles represent two perspectives of continual graph

learning – data perspective and model perspective. Our work is

1293

Multimodal Continual Graph Learning with
Neural Architecture Search WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

from model perspective, which can be also cast as a regularization-

based method. One of the shortcomings of the above continual

graph learning methods is that they fix the GNN structure, which

is a notable difference between existing methods and our model.

If the change of data distribution is dramatic, the history model

architecture may not perform well for new data.

2.3 Continual Neural Architecture Search
Neural architecture search (NAS) has been a hot topic in recent

years. It intends to automatically search for the most effective model

architecture for a specific deep learning problems without human

intervention. Different graph data vary greatly in structure, content,

and task, and the befitting GNNs can vary greatly, so scientists also

pay close attention to graph neural architecture search [9, 10, 15, 29,

36, 37]. Gao et al. [8] propose GraphNAS based on reinforcement

learning. A recurrent network is used to generate the description

of GNN, and is trained with reinforcement learning to maximize

the expected accuracy of the generated architectures.

Pasunuru et al. [21] propose a new continual architecture search

(CAS) method to evolve both model architecture and model param-

eters during continual training of multiple tasks without losing

the performance of previously learned tasks. Hu et al. [12] propose

Petridish to iteratively add shortcut connections to existing network

layers, which can be used for warm-starting in lifelong-learning

scenarios. With the idea of using NAS to find more competitive

model for new tasks, Fu et al. [5] use weight sharing and knowledge

distillation to shorten the training time and remember old classes.

Niu et al. [20] propose Adaptive eXpert (AdaXpert) to adjust model

architecture on the growing data. They adjust the model struc-

ture according to data distributions of different datasets. However,

the above method are proposed for CNNs or RNNs. There is no

continual neural architecture search methods for GNNs.

3 PROBLEM DEFINITION
In this section, we design the general formulation of the multimodal

structure-evolving continual graph learning problem. In short, the

problem is how to learn a multimodal GNN fθ that can sequentially

learn on coming multimodal graphs G1, · · · ,Gt successively.

Definition 1. A streaming multimodal graph is a sequence
of multimodal graphs G = {G1, G2, · · · ,Gt−1,Gt , · · · }, where each
multimodal graph G = {V ,E}. V = {v1, ...,vN } denotes N nodes,
E = {⟨vi ,vj ⟩|1 ≤ i, j ≤ N } denotes the set of edges. For each node
vi ∈ V ,vi corresponds to multimodal node featuresXi and a category
label yi ∈ Yt = {0, 1, 2, · · · }.

In our continual learning settings, different tasks correspond to

different multimodal graphs G and label sets Y . Each task is a two-

category node classification task and each node has two modalities:

vision modality and textual modality.

Definition 2. Given a sequence of multimodal graphs G = {G1,

G2, · · · ,Gt−1,Gt , · · · }, each graphGt corresponds to a task Tt . Each
task Tt contains a training node set V tr

t and a testing node set V tr
t ,

with corresponding feature sets X tr
t and X te

t . Continual learning
for streaming multimodal graph aims to learn these tasks se-
quentially without catastrophic forgetting problem.

Table 1: Glossary of Notations

Notation Description

Tt ,Gt the t-th task and corresponding multimodal graph

Xt , yt feature matrix and label vector of the t-th task

m modality, i.e. vision and textual modality

h
(l)
u (h

(l)
u,m) the l-th layer representation of node u (of modalitym)

Wt the parameters of the t-th MGNN model

At the architecture of the t-th MGNN model

In order not to take up too many resources, we hope to solve

the problem within the following two constraints: Firstly, at each

snapshot, we don’t have history graphs. Different from continual

learning methods on data perspective, our method doesn’t replay

any experience nodes. However, our model is compatible with

experience replay methods because we don’t require additional

assumption on data. Secondly, the model should not only perform

well on the current task but also overcome catastrophic forgetting

problem with respect to the previous tasks. That means we need

to reduce unnecessary changes to parameters that are important

to previous tasks. Thus we propose the following definition of

multimodal structure-evolving continual graph learning.

Definition 3. The goal of multimodal structure-evolving
continual graph learning is to find the optimal multimodal GNN
architecture and model parameters that satisfies:

(A∗t ,W
∗
t) = arдmin(At ,Wt)∈(A,W)LM (f(At ,Wt)(Gt |At−1,Wt−1))

(1)

where A∗t andW
∗
t are the best architecture and model parameters

for task Tt , A andW is the search space of model architectures and
parameters.

What is different from structure-fixed continual learning meth-

ods is that the model structure changes while the new task comes.

It’s easy to understand that if the data distribution changes, the his-

tory model architecture may not be the optimized one for the new

data. We only save the model from last task because multimodal

graphs lead to more complex models to consider than ordinary

graph learning problems. The model cannot be too complex and

we cannot save the model for every task because of massive param-

eters.

4 METHODS
Here the question arises: how to avoid catastrophic forgetting prob-

lem caused by saving specific sub-models from the last task? In this

section, we introduce the details of our multimodal and structure-

evolving continual graph learning (MSCGL) method.

4.1 Overall MSCGL framework
The life-cycle of MSCGL framework comprises four stages, i.e., data

processing, neural architecture search, searched model training

and maintenance as summarized in Figure 1. In the data process-

ing stage, we process raw data and construct a multimodal graph

neural network named AdaMGNN (detailed in Section 4.2). In the

neural architecture search stage, we search for the architecture and

parameters jointly that not only remember past knowledge but

1294

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Cai, et al.

𝑮𝑵𝑵𝟏

𝑮𝑵𝑵𝟐

𝑊!
(#)

𝑊!
(%)

𝑊!
(&)

𝑊!
(')

block sparse &
orthogonality condition

t+1tt-1t-2t-3 Time

Future taskPrevious tasks

a

a a

b
bb

a

b
a

b

b

cb

c

b

c

c

b
b

b

b

a

a
b

c

b
c

b

?

?

?

bc

?

?

?

?

Current task
Users Contents

Textual
Visual

(a) Data preprocessing (b) Architecture Search (c) Retrain the AdaMGNN with
the new architecture

𝐺𝑁𝑁 𝑐𝑒𝑙𝑙𝑠

Classifier

𝐺𝑁𝑁 𝑐𝑒𝑙𝑙𝑠

Concatenate

AdaMGNN

NAS

(d) Update the existing AdaMGNN

Existing
AdaMGNN

Sharing
strategy

Sharing
strategy

Classifier

Concatenate

?

?

?
? ?

?
?

b

c

a

AdaMGNN

Figure 1: The overall framework of the proposed MSCGL model.
(a) Data preprocessing stage. A sequential of multimodal graphs contains textual and visual modalities is received. In this step, we extract

multimodal features using ViT and Bert. (b) Architecture search stage. Yellow graph and green graph denote graph of textual and visual

modalities, respectively. In this stage, we use NAS to search for the best architecture of the current task. (c) Retraining stage. We retrain the

model found in the architecture search stage (blue color) with regularization for shared parameters. (d)Maintenance stage. We merge the

retrained model with the current AdaMGNN model by sharing strategy.

also perform well on new tasks. In the shared model training stage,

we retrain the best architecture found in the neural architecture

search stage. In the maintenance stage, we explicitly remove ob-

solete blocks of old architectures and equips the model with new

blocks that save the knowledge from both the new task and history

tasks.

4.2 Multimodal Graph Neural Network
In this section, we introduce our AdaMGNN, which serves as a

shared model through all stage of our MSCGL framework.

Since AdaMGNN needs to be shared and evolved between differ-

ent tasks and different architectures, the design of our AdaMGNN

is totally different from previous multimodal GNNs. In order to

better collaborate with continual learning for structure evolving

multimodal graphs, AdaMGNN need to 1) fully leverage the con-

nections between different nodes; 2) organize different modalities

in a unified manner for further node classification; 3) the architec-

ture can be adjusted adaptively according to the coming tasks. To

achieve these demands, we inherit and extend the framework of

GraphNAS. Our AdaMGNN model consists of two components -

GNN cells and prediction layer.

4.2.1 GNN cells. In GNN cells, we model the information prop-

agation and aggregation under different modals. We represent

the data from each modality as a graph Gm = (Vm ,E), where
Vm = {X

m |Xm ∈ Im } and E = {(i, j)}. Im denote the set of

features from a specific modalitym.m ∈ M = {v, t} denote the
visual and textual features, respectively.

The GNN cell in the l-th layer of modalitym updates node feature

hv,m for each node v by aggregating its neighborhoods as

h
(l)
u,m = σ (W

(l)
m · Φl,m ({h

(l−1)
v,m : v ∈ N (u)})), (2)

where Φl,m is the aggregation function including correlation com-

putation and aggregation operation, σ is the activation function.

W
(l)
m is the network weight, h

(l−1)
v,m is the output of the last layer or

the input feature for l − 1 = 0, N (u) is the receptive field of the

node u.
For Φl,m , we firstly calculate correlation coefficient e

(l)
u,v,m for

each node v ∈ N (u), then we aggregate information from neigh-

borhoods as listed in Table 2. Formally,

Φl,m ({h
(l−1)
v,m : v ∈ N (u)}) = Aдд({e

(l)
u,v,mh

(l−1)
v,m : v ∈ N (u)}). (3)

4.2.2 Prediction Layer. After updating the representations of nodes
in a particular modalitym, we combine the representations of dif-

ferent modality into a new representation, which can be expressed

as:

h′u = hu,v | |hu,t (4)

We let the concagation of the output of final GNN layers h′u to be

the input of the classification layer, and use a linear layer to predict

the label of each node:

ŷu = so f tmax(tanh(Wh
(l)
u + b)), (5)

whereW is the trainable weight matrix and b is the bias vector. We

use softmax function to obtain the final prediction score ŷu .

4.3 Multimodal Graph Neural Architecture
Search

One challenge is that existing continual learning methods need to

store a large number of network parameters, so the spatial com-

plexity is high. Thus, we use NAS to determine the new network

architecture, and the new network architecture shares part of the

network structure and weights with the history network architec-

tures.

1295

Multimodal Continual Graph Learning with
Neural Architecture Search WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

Table 2: Operators of search spaceM

Action Operator Value

aggregationsum

∑
j ∈Nu hu

mean 1/|Nu |
∑
j ∈Nu hu

max maxj ∈Nu hu
mlp MLP((1 + ϵ)hu +

∑
v ∈N (u) hv)

activation / tanh, relu, identity, softplus, leaky_relu,

relu6, elu

correlation const econuv = 1

gcn e
дcn
uv = 1/

√
dudv

gat e
дat
uv = LeakyReLU (Wl ∗ hu +Wr ∗ hv)

sym-gat e
sдat
uv = e

дat
uv + e

дat
vu

mgat e
mдat
uv = e

дat
uv ∗ σ (hu ∗ hv/

√
dudv)

cos ecosuv = ⟨Wl ∗ hu ,Wr ∗ hu ⟩

linear el inuv = tanh(sum(Wr ∗ hv))

Our method is based on GraphNAS, which enables automatic

design of the best graph neural architecture based on reinforcement

learning. Given the search spaceM of AdaMGNN, we aim to find

the best architecturem∗ ∈ M that not only maximizes the accuracy

R of the network on a validation set D, but also remember the

learned knowledge from the past tasks.

In the remaining part of this section, we introduce a novel search

space for AdaMGNN. Then we formulate the search process as

an optimization problem and train the controller to search for the

model architecture and weights jointly. At the last part, we show

more details of controller training loss that helps to search for the

model with best memory ability.

Search Space. We define the search spaceM as follows: the

correlation measure dimension Att , the aggregation dimension

Aдд and the activation function Act . We generate the architecture

descriptions as a sequence of tokens, while each token corresponds

to the operation of each AdaMGNN layer. Similar to GraphNAS,

we design the search space of the components of the AdaMGNN

layers in Table 2.

Train the controller. The training of controller is similar with

GraphNAS. Letting P(a;θ) be the distribution of architecture a
parameterized by the choice of controller θ , the aim is to maximize

the expected accuracy EP (a;θ)[R(a(w
∗,G))] with minimizing the

training lossLtrain (a(w,G)), which can be represented as a bi-level
optimization problem listed below:

max

w
E[R(a(w∗,G))], (6)

s .t . w∗ = argmin

w
Ltrain (a(w,G)). (7)

Herew∗ is the shared weights according to the sharing strategy in

Section 4.4. Different from GraphNAS, our training loss is defined

as follows:

Ltrain (yu , ŷu) = −
1

M

N∑
i=0
(yui log ŷui − (1 − yui) log(1 − ŷui)) + Lc ,

(8)

where Lc is the regularization item aiming to find architectures

that is qualified for continual learning. yui is the actual label, ŷui is
the predictive scores, N is the batch size.

Regularization for shared parameters. We define Lc as a

combination of two parts:

Lc = λbLb + λoLo , (9)

where

Lb =
∑
W

∑
i
| |W [i, :]| |2, (10)

Lo =
∑

Wr ef ,W ∈W

| |WT
ref ·ψr ef | |

2

2
, (11)

where λb is the block sparse coefficient, λo is the orthogonal co-

efficient.W is the space of shared parameters.ψr ef =W −Wr ef
is a learnable parameter which is block sparse and orthogonal to

WT
ref ,k . These two regularizations can be seen as constraints for the

search space of AdaMGNN parameters. We want to search for the

parameters that are both block sparse and orthogonal to previous

shared parameters.

4.4 Multimodal Structure-evolving Continual
Graph Learning

Without loss of generality, we assume to have a finite sequence of t
tasks T1, · · · ,Tt and we maintain an AdaMGNN model with shared

parameters θshared .
Close to the idea of ENAS[12] that all the architectures which

NAS ends up iterating over can be viewed as sub-graphs of a larger

architecture graph, we represent the architecture of AdaMGNN

as a graph that the topology is fixed. Each node in the graph rep-

resents the local computations and the edges represent the flow

of information. Local computations on each node have their own

parameters, which are only used when a particular computation

is active. Therefore, MSCGL allows parameter sharing, orthogonal

learning and warm-starting.

In the following, we facilitate the discussion of AdaMGNN with

an example that illustrates our sharing strategy and continual learn-

ing strategy for a single GNN cell. We illustrate the AdaMGNN via

a simple example with layers number L = 2 and modality number

M = 2. To create an AdaMGNN architecture, the controller samples

4 blocks of decisions, each decision is used to create a GNN cell.

Step 1 Assume the best correlation function is found to bemдat ,
then the nodemдat should be considered in block sparse

regularization. The parameters ofmдat are saved in node

mдat .
Step 2 The best correlation function is found to be mдat again,

which means that this node should be considered in both

block sparse regularization and orthogonal regularization.

After retraining of shared model, the parameters of node

mдat in Step 1 are cover by the new parameters.

Step 3 The best correlation function is found to be дat , thus node
дat only need be computed in block sparse regularization.

The parameters of node дat are saved.

Sharing Strategy. We have explored different sharing strate-

gies including: 1) Share parameters between the same GNN cells; 2)

Share parameters between the same aggregations; 3) Share param-

eters between all aggregations. However, only the second strategy

1296

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Cai, et al.

works well. In this way, when training AdaMGNN for a new task

Tt , MSCGL will check for each GNN cell whether the aggregation

action has parameters in the last GNN cells. If so, we will add two

constructions on the training of this parameter. If not, we will only

add block sparse construction.

Algorithm 1:Multimodal and Structure-evolving Contin-

ual Graph Learning

Input: Sequences of node classification tasks,

T0,T1, · · · ,TN ; Shared model f with parameters

θshare ;
Output: Predicted labels for nodes of each task Tt ;

1 for t ← 1 to N do
2 while not converge do
3 Controller samples architectures setM from search

space;

4 for M inM do
5 θ ′ ← sharing_strategy(θshare);

6 Train AdaMGNN(θ ′,M,Gt ,Xt , yt);

7 Train controller;

8 θshare ← Train AdaMGNN(θ ′,Mt ,Gt ,Xt , yt);
9 ŷpred,t ← Predict using

AdaMGNN(θshare ,Mt ,Gt ,Xt);

Group sparse regularization.Many scientists have conducted

profound and extensive studies on the sparsity of neural networks.

They design a series of network compression methods, such as

low-rank approximation, network pruning, network quantization,

knowledge distillation and so on[19]. Scardapane S et al. [23] pro-

pose group sparse regularization for deep neural networks. This

method considers the following optimization tasks simultaneously:

removing unnecessary weight of deep neural network, reducing the

number of hidden layer neurons and doing input feature selection.

Pasunuru et al. [21] propose two restrictions when searching for

weights: the network parameters are block-sparse, and the changes

of network parameters are block-sparse and orthogonal to the old

network parameters. In this way, the new architecture and parame-

ters have less impact on past tasks. Although these two restrictions

are originally designed for DNN, our experiments also verify the

effectiveness of this method for GNN.

5 EXPERIMENTS
In this section, we perform various experiments to verify the effec-

tiveness of the proposed MSCGL method. We give detailed infor-

mation about the datasets and the baselines we compare in Section

5.1 and 5.2 respectively. The metrics we use to evaluate models are

introduced in Section 5.3. The implementation details are described

in Section 5.4. The comparison results between MSCGL and other

baselines are given in Section 5.5. At last, we verify the effectiveness

of each part in MSCGL through ablation study in Section 5.6.

31.70%
21.73%

12.14%

14.46%

14.25%

67.00%

15.75% 16.05%

35.52%

25.83%

0.00%

20.00%

40.00%

60.00%

80.00%

Entertain Financial Social Sports Vulgar Junk Motivate

Clothing Grocery Home

Amazon dataset Articles dataset

1098
658 484 423 386

1326
375 281

1058
671

2366
2370

3503

2503 2322 653
2006

1470

1921
1927

0

1000

2000

3000

4000

Clothing
Grocery

Home
Entertain

Financial
Social

Sports
Vulgar Junk

Motivate

number of class 1 number of class 0

(a) The percentage of nodes in class 1 for each task.

31.70%
21.73%

12.14%

14.46%

14.25%

67.00%

15.75% 16.05%

35.52%

25.83%

0.00%

20.00%

40.00%

60.00%

80.00%

Entertain Financial Social Sports Vulgar Junk Motivate

Clothing Grocery Home

Amazon dataset Articles dataset

1098
658 484 423 386

1326
375 281

1058
671

2366
2370

3503

2503 2322 653
2006

1470

1921
1927

0

1000

2000

3000

4000

Clothing
Grocery

Home
Entertain

Financial
Social

Sports
Vulgar Junk

Motivate

number of class 1 number of class 0
(b) The number of nodes in different classes for each task.

Figure 2: Statistics of Amazon dataset and Articles dataset.

5.1 Datasets
We evaluate the proposed MSCGL together with several popular

state-of-the-art baselines on two real-world multi-modal node clas-

sification datasets. Each dataset is split into several sub-tasks with

no overlapped label space. We form these sub-tasks in a streaming

manner to mimic the real-world scenarios that data always come

with remarkably different new classes compared to the previous

data. Continual learning is to handle the upcoming new tasks while

preserving performances on previous tasks.

Amazon Dataset: We extract our Amazon Dataset from Ama-

zon product data [11] which contains product data with product

name, URL of the product image and related products from differ-

ent product categories. Each node represents a product with two

modality: visual image and textual name. Two nodes are connected

if there exists one user viewing both of them. The labels of nodes

are generated according to the fine-grained categories the products

belong to. We construct 3 tasks for streaming setting: Clothing,

Grocery, and Home respectively.

Articles Dataset: The dataset is constructed from the articles

on Tencent Wechat. Each article corresponds to two modality: vi-

sual head images and textual titles. Two articles are connected if

there exists one user viewing both of them. Each article is labeled

according to the quality of the content. We construct 7 tasks: Junk,

Motivate, Vulgar, Social, Financial, Entertain and Sports.

For each dataset, we use the open-source implementations [32]

of pre-trained Bert [3] to extract the textual features and pre-trained

Vision Transformer (ViT) [4] to extract the visual features. Each

dataset is pre-processed following the transductive setting: Input

graphs can be observed in all dataset segmentation (training, vali-

dation, and test sets). We split nodes and labels into training, vali-

dation, and test sets in a 4:2:2 ratio.

1297

Multimodal Continual Graph Learning with
Neural Architecture Search WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

5.2 Comparative Methods
We accommodate several state-of-the-art continual graph learning

baselines. Tomake them support multimodal settings, the visual and

textual embedding of nodes are concatenated and the comparative

methods are listed below.

• MSCGL (ours): It is a continual learning method tailored

for multimodal GNN. MSCGL explores a new strategy with

joint optimization of NAS and GSR across sequential tasks.

• Topology-awareWeight Preserving (TWP)[17]: It explic-
itly studies the topology aggregation mechanism of different

tasks, captures the topology information of graphs, and finds

the key parameters that are important for both task-related

and topology-related goals.

• Learning Without Forgetting (LWF)[16]: This method

can be seen as the combination of knowledge distill tech-

nology and fine-tune. Different from fine-tune, LWF uses

knowledge distill loss to encourage the output of the new

network close to the output of the old network.

• Elastic Weight Consolidation (EWC)[14]: As a regular-

ization based method, EWC maintains parameters that are

important to previously learned tasks by limiting model pa-

rameters close to the old values when new task comes.

• Memory aware synapses (MAS)[1]: It computes the im-

portance of the parameters of a neural network. When learn-

ing a new task, changes to important parameters are penal-

ized, which effectively prevent important knowledge related

to previous tasks from being overwritten.

• Gradient Episodic Memory (GEM)[18]: For each task, it

uses episodic memory to store a subset of the observed ex-

amples. When learning for the new task, the loss for old task

is restricted to not increasing.

We also compare MSCGL with fine-tune and joint-train. For the

fine-tune method, we directly fine tune the trained model on the

new tasks without considering the catastrophic forgetting problem.

For the joint-train, we train all the tasks jointly and evaluate on

each task. Note that joint-train is an approximate upper bound for

the continual learning settings since no forgetting phenomenon

exists. We leverage MGAT, a strong multimodal graph learning

state-of-the-art as the base model in these baselines.

5.3 Metrics
Firstly, we use classification accuracy as the primary evaluation

measure for each task. In order to measure the memorizing and

learning abilities of our continual graph learning method, we use

average performance (AP) and average forgetting (AF) as in [38]

and [17]. AP is the average test performance of all tasks of the

final model. AF is the average difference between the final model

performance and the intermediary model performance of each task.

5.4 Implementation Details
Details of AdaMGNN. For each task, we empirically set the di-

mension number of the hidden states of AdaMGNN to be 256, and

the dimension number of fusion layer to be 64. We fix the layer

number of AdaMGNN to 2, and use concatenation and sum as our

fusion and aggregation strategy. We use an initial learning rate of

1e −4 and an early stopping strategy according to the cross-entropy

Table 3: Predictive performance of each step on Amazon
dataset.

Method

Amazon Articles

AP AF AP AF

Fine-tune 75.61 -19.98 61.01 -39.1

LWF 78.78 -14.14 86.69 -2.12

EWC 86.38 -3.10 82.17 -6.41

MAS 85.20 -0.85 86.37 0.17
GEM 77.93 2.48 80.68 -10.39

TWP 83.27 -0.22 86.70 -0.26

MSCGL 89.44 0 86.70 -0.89

Joint Train 90.04 - 91.93 -

Table 4: Predictive performance on Amazon dataset and Ar-
ticles dataset.

Method

Amazon Articles

Clothing Grocery Home Entertain Financial Motivate

Step-1 83.42 - - 88.40 - -

Step-2 83.42 88.14 - 87.71 86.37 -

Step-3 83.42 88.14 96.74 87.88 85.27 86.95

Joint Train 83.42 89.46 97.24 83.96 94.29 87.52

loss and accuracy on the validation datasets, with a patience of 100

epochs.

Details of architecture search. Similar to GraphNAS, the con-

troller is a one-layer LSTM with 100 hidden units. The controller is

set to run 50 steps. Once the controller samples an architecture, the

constructed child model is randomly initialized and trained for 300

epochs without parameter sharing. During training, we apply both

block sparse loss term and orthogonal loss term with coefficients

1e-3 and 1e-3. After the controller trains 400 architectures, we select

the best architecture and retrain it on new dataset with block sparse

regularization and orthogonal regularization for 300 epochs.

Details of baselines.We use an open-source implementation of

continual graph learning methods and the experimental settings are

similar with [17]. The visual and textual features are concatenated

directly to make them support multimodal settings.

5.5 Study on Multimodal Continual Graphs
In Table 3, we compare the baseline methods against our proposed

method MSCGL on two real-world dataset for three steps. For

Amazon dataset, we use Clothing, Grocery and Home to construct

multimodal graphs. For Articles dataset, we use Entertain, Financial

and Motivate to construct multimodal graphs. MSCGL significantly

and consistently outperforms the baselines for both Amazon dataset

and Articles dataset. For Amazon dataset, the AP of MSCGL is close

to the AP of joint train model. The fine-tune model achieves the

worst performance among all baselines, reflecting the catastrophic

1298

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Cai, et al.

Table 5: Predictive performance of each step on Articles dataset.

Models

Articles

Entertain Financial Social Sports Vulgar Junk Motivate

Step-1 90.10 - - - - - -

Step-2 90.10 91.16 - - - - -

Step-3 90.10 89.69 77.58 - - - -

Step-4 89.59 88.03 72.54 88.89 - - -

Step-5 90.10 89.69 76.32 88.89 86.61 - -

Step-6 90.10 89.69 76.32 88.89 86.61 73.53 -

Step-7 90.10 80.29 73.05 86.58 86.61 73.20 85.22

Table 6: Ablation experiment about our regularizationmeth-
ods. C1 is block sparse coefficient. C2 is orthogonal coeffi-
cient.

Models AP AF

None 62.81 -36.77

C1 81.25 -6.81

C2 71.43 -21.99

C1 + C2 86.70 -0.89

Table 7: Predictive performance with different coefficients.
C1 is block sparse coefficient. C2 is orthogonal coefficient.

Hyperparameter of C1 and C2 AP AF

1e-2 78.47 - 0.915

1e-3 91.20 -2.10

1e-4 84.14 -26.28

forgetting problem of multimodal GNNs. Another point of con-

cern is that although TWP is originally designed for GNNs, its

performance on multimodal graphs is close to that of MAS.

In Table 4, we show the performance for each task at each step.

For Amazon dataset, the GNN cells searched by MSCGL are totally

different between different tasks, that’s why our model doesn’t

forget any history knowledge. It is worth mentioning that although

the model architecture is different, the performance is competitive

with the performance of joint train. For Articles dataset, the GNN

cells searched by MSCGL are overlapped between different tasks,

so there’s a slight decrease in the accuracy of the model between

different tasks.

On the contrary, the continual graph learning baselines cannot

perform well simultaneously on both datasets. For example, TWP

performs as well asMSCGL onAmazon dataset but performs far less

than MSCGL on Articles dataset. That reflects another shortcom-

ings of existing continual graph learning methods: they perform

well on specific datasets and can not be generalized to datasets

of various domains because their memory ability is single-faceted.

In comparison, our MSCGL model leverages NAS to keep current

most informative sub-model while automatically finding the best

additional sub-model specialized for the new tasks.

5.6 Ablation Study
Long-term memory ability. In Table 5, we show the long-term

memory ability of our MSCGL framework on Articles dataset. In

this experiment, we use random search for better ablation study of

our sharing strategy. The PM is 82.15% and the AF is 3.0%. For most

tasks except Financial, the accuracy maintains in a stable range.

Effectiveness of regularization terms. We verify the effec-

tiveness of the block sparse (C1) and orthogonal (C2) terms and

show the result in Table 6. Compared with baseline with no regular-

ization terms, both C1 and C2 can lead to significant improvement

on AP and AF. Moreover, leveraging both C1 and C2 results in

further improvement on both metrics.

Hyperparameter sensitivity.Wealso study the effect of chang-

ing block sparse regularization coefficient and orthogonal regular-

ization coefficient. In this experiment, we fix the model architecture

of different tasks to be GAT and the dataset is Amazon with 3 tasks.

Table 7 compares the performance of MSCGL when adopting differ-

ent coefficient values 1e − 2, 1e − 3 and 1e − 4. From the result, we

can see well-designed hyperparameters are needed to balance the

learning ability and memory ability of AdaMGNN. Specifically, a

larger block sparse coefficient will leave more space for AdaMGNN

to storage history information that enhance the effect of memory.

However, it will also result in limited learning ability for new tasks

because a more compact model is learned.

6 CONCLUSION
In this paper, we propose a novel MSCGL model, which continually

learns both the model architecture and the corresponding parame-

ters for sequential multimodal graph tasks. In order for continually

adapting to new tasks without forgetting the old ones, our MSCGL

model considers both the multimodal and structural information

to acquire, preserve and extend knowledge. The two parts interact

with each other reciprocally, where NAS explores more promising

architectures and GSR preserves important history information. We

empirically demonstrate the superiority of MSCGL compared with

existing continual graph learning methods through extensive ex-

periments. An interesting future research direction would be using

information about past tasks as prior knowledge in the architecture

search process.

1299

Multimodal Continual Graph Learning with
Neural Architecture Search WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France

ACKNOWLEDGMENTS
This work is supported by the National Key Research and Develop-

ment Program of China No.2020AAA0106300 and National Natural

Science Foundation of China No. 62102222.

REFERENCES
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and

Tinne Tuytelaars. 2018. Memory Aware Synapses: Learning what (not) to forget.

arXiv:1711.09601 [cs.CV]

[2] Matthias Delange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Ales

Leonardis, Greg Slabaugh, and Tinne Tuytelaars. 2021. A continual learning

survey: Defying forgetting in classification tasks. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2021).

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

CoRR abs/1810.04805 (2018). arXiv:1810.04805 http://arxiv.org/abs/1810.04805

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-

aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg

Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An Image

is Worth 16x16 Words: Transformers for Image Recognition at Scale. CoRR
abs/2010.11929 (2020). arXiv:2010.11929 https://arxiv.org/abs/2010.11929

[5] Xianya Fu, Wenrui Li, Qiurui Chen, Lianyi Zhang, Kai Yang, Duzheng Qing,

and Rui Wang. 2020. NASIL: Neural Network Architecture Searching for Incre-

mental Learning in Image Classification. In International Symposium on Parallel
Architectures, Algorithms and Programming. Springer, 68–80.

[6] Lukas Galke, Benedikt Franke, Tobias Zielke, and Ansgar Scherp. 2021. Lifelong

Learning of Graph Neural Networks for Open-World Node Classification. In 2021
International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[7] Difei Gao, Ke Li, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2020. Multi-

modal graph neural network for joint reasoning on vision and scene text. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
12746–12756.

[8] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. 2019. Graphnas:

Graph neural architecture search with reinforcement learning. arXiv preprint
arXiv:1904.09981 (2019).

[9] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. 2020. Graph

Neural Architecture Search.. In IJCAI, Vol. 20. 1403–1409.
[10] Chaoyu Guan, Xin Wang, and Wenwu Zhu. 2021. Autoattend: Automated at-

tention representation search. In International Conference on Machine Learning.
PMLR, 3864–3874.

[11] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[12] Hanzhang Hu, John Langford, Rich Caruana, Saurajit Mukherjee, Eric Horvitz,

and Debadeepta Dey. 2019. Efficient forward architecture search. arXiv preprint
arXiv:1905.13360 (2019).

[13] Wengong Jin, Kevin Yang, Regina Barzilay, and Tommi S. Jaakkola. 2018. Learning

Multimodal Graph-to-Graph Translation for Molecular Optimization. CoRR
abs/1812.01070 (2018). arXiv:1812.01070 http://arxiv.org/abs/1812.01070

[14] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume

Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and

Raia Hadsell. 2017. Overcoming catastrophic forgetting in neural networks.

arXiv:1612.00796 [cs.LG]

[15] Yanxi Li, Zean Wen, Yunhe Wang, and Chang Xu. 2021. One-shot graph neural

architecture search with dynamic search space. In Proc. AAAI Conf. Artif. Intell,
Vol. 35. 8510–8517.

[16] Zhizhong Li and Derek Hoiem. 2017. Learning without Forgetting.

arXiv:1606.09282 [cs.CV]

[17] Huihui Liu, Yiding Yang, and Xinchao Wang. 2020. Overcoming catastrophic

forgetting in graph neural networks. arXiv preprint arXiv:2012.06002 (2020).
[18] David Lopez-Paz and Marc’Aurelio Ranzato. 2017. Gradient episodic memory for

continual learning. Advances in neural information processing systems 30 (2017),
6467–6476.

[19] Rahul Mishra, Hari Prabhat Gupta, and Tanima Dutta. 2020. A Survey on

Deep Neural Network Compression: Challenges, Overview, and Solutions.

arXiv:2010.03954 [cs.LG]

[20] Shuaicheng Niu, Jiaxiang Wu, Guanghui Xu, Yifan Zhang, Yong Guo, Peilin Zhao,

Peng Wang, and Mingkui Tan. 2021. AdaXpert: Adapting Neural Architecture

for Growing Data. In International Conference on Machine Learning. PMLR, 8184–

8194.

[21] Ramakanth Pasunuru and Mohit Bansal. 2019. Continual and multi-task archi-

tecture search. arXiv preprint arXiv:1906.05226 (2019).

[22] Yu-xin Peng, Wen-wu Zhu, Yao Zhao, Chang-sheng Xu, Qing-ming Huang,

Han-qing Lu, Qing-hua Zheng, Tie-jun Huang, and Wen Gao. 2017. Cross-

media analysis and reasoning: advances and directions. Frontiers of Information
Technology & Electronic Engineering 18, 1 (2017), 44–57.

[23] Simone Scardapane, Danilo Comminiello, Amir Hussain, and Aurelio Uncini.

2017. Group sparse regularization for deep neural networks. Neurocomputing
241 (2017), 81–89.

[24] Manos Schinas, Symeon Papadopoulos, Georgios Petkos, Yiannis Kompatsiaris,

and Pericles A Mitkas. 2015. Multimodal graph-based event detection and sum-

marization in social media streams. In Proceedings of the 23rd ACM international
conference on Multimedia. 189–192.

[25] Zhulin Tao, Yinwei Wei, Xiang Wang, Xiangnan He, Xianglin Huang, and Tat-

Seng Chua. 2020. MGAT: multimodal graph attention network for recommenda-

tion. Information Processing & Management 57, 5 (2020), 102277.
[26] JinguangWang, Jun Hu, Shengsheng Qian, Quan Fang, and Changsheng Xu. 2020.

Multimodal graph convolutional networks for high quality content recognition.

Neurocomputing 412 (2020), 42–51.

[27] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming graph neu-

ral networks via continual learning. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management. 1515–1524.

[28] Junshan Wang, Guojie Song, Yi Wu, and Liang Wang. 2020. Streaming Graph

Neural Networks via Continual Learning. In Proceedings of the 29th ACM Inter-
national Conference on Information & Knowledge Management (Virtual Event,
Ireland) (CIKM ’20). Association for Computing Machinery, New York, NY, USA,

1515–1524. https://doi.org/10.1145/3340531.3411963

[29] Xin Wang, Shuyi Fan, Kun Kuang, and Wenwu Zhu. 2021. Explainable automated

graph representation learning with hyperparameter importance. In International
Conference on Machine Learning. PMLR, 10727–10737.

[30] Xin Wang, Ziwei Zhang, and Wenwu Zhu. 2022. Automated Graph Machine

Learning: Approaches, Libraries and Directions. arXiv:2201.01288 [cs.LG]

[31] YinweiWei, XiangWang, Liqiang Nie, Xiangnan He, Richang Hong, and Tat-Seng

Chua. 2019. MMGCN: Multi-modal graph convolution network for personalized

recommendation of micro-video. In Proceedings of the 27th ACM International
Conference on Multimedia. 1437–1445.

[32] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,

Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe

Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,

Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,

and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language

Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational

Linguistics, Online, 38–45. https://www.aclweb.org/anthology/2020.emnlp-

demos.6

[33] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1 (2020), 4–24.

[34] Yishi Xu, Yingxue Zhang,Wei Guo, Huifeng Guo, Ruiming Tang, andMark Coates.

2020. Graphsail: Graph structure aware incremental learning for recommender

systems.. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 2861–2868.

[35] Jianing Yang, YongxinWang, Ruitao Yi, Yuying Zhu, Azaan Rehman, Amir Zadeh,

Soujanya Poria, and Louis-Philippe Morency. 2021. MTAG: Modal-Temporal

Attention Graph for Unaligned Human Multimodal Language Sequences. In

Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 1009–1021.

[36] Qin Yijian,WangXin, Zhang Zeyang, and ZhuWenwu. 2021. GraphDifferentiable

Architecture Search with Structure Learning. In Thirty-Fifth Conference on Neural
Information Processing Systems.

[37] Huan Zhao, Lanning Wei, and Quanming Yao. 2020. Simplifying architecture

search for graph neural network. arXiv preprint arXiv:2008.11652 (2020).
[38] Fan Zhou and Chengtai Cao. 2021. Overcoming Catastrophic Forgetting in Graph

Neural Networks with Experience Replay. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 35. 4714–4722.

[39] W. Zhu, P. Cui, Z. Wang, and G. Hua. 2015. Multimedia Big Data Computing.

IEEE MultiMedia 22, 03 (jul 2015), 96–c3. https://doi.org/10.1109/MMUL.2015.66

[40] Wenwu Zhu and Xin Wang. 2021. Automated Machine Learning and Meta-

Learning for Multimedia.

[41] Barret Zoph and Quoc V Le. 2016. Neural architecture search with reinforcement

learning. arXiv preprint arXiv:1611.01578 (2016).

1300

https://arxiv.org/abs/1711.09601
https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1812.01070
http://arxiv.org/abs/1812.01070
https://arxiv.org/abs/1612.00796
https://arxiv.org/abs/1606.09282
https://arxiv.org/abs/2010.03954
https://doi.org/10.1145/3340531.3411963
https://arxiv.org/abs/2201.01288
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://doi.org/10.1109/MMUL.2015.66

	Abstract
	1 Introduction
	2 Related Work
	2.1 Multimodal Graph Neural Networks
	2.2 Continual Graph Learning
	2.3 Continual Neural Architecture Search

	3 Problem Definition
	4 Methods
	4.1 Overall MSCGL framework
	4.2 Multimodal Graph Neural Network
	4.3 Multimodal Graph Neural Architecture Search
	4.4 Multimodal Structure-evolving Continual Graph Learning

	5 Experiments
	5.1 Datasets
	5.2 Comparative Methods
	5.3 Metrics
	5.4 Implementation Details
	5.5 Study on Multimodal Continual Graphs
	5.6 Ablation Study

	6 Conclusion
	Acknowledgments
	References

